Search results for "Octane rating"
showing 10 items of 12 documents
Formation of products responsible for motor and research octane of gasolines produced by cracking The implication of framework Si/Al ratio and operat…
1989
Abstract An alkane in the range of gasoline fraction ( n -heptane) has been used as a reactant to study the influence of zeolite Y catalyst and process variables (i.e., framework Si Al ratio and procedure of dealumination, time on stream, and contact time) on the formation of products responsible for motor and research octane of gasoline during cracking, namely branched, aromatics, and olefins. It is found that the branched isomers in the C 5 and C 6 fractions appear as primary products and are partly produced by disproportionation, since the ratio of iso to normal compounds is above equilibrium. The ratio of branched to linear products strongly decreases when the number of carbon atoms of …
Design and Implementation of an Electronic Control Unit for a CFR Bi-Fuel Spark Ignition Engine
2017
In this work an Electronic Control Unit for the management of a CFR engine will be described. The engine, which is used both for fuel octane rating (both in terms of RON and MON) and for research purpose, is equipped with a double injection system, with the aim to independently operate both with liquid and gaseous fuels. The developed ECU, hence, is able to control the injections of both kind of fuel, together with the spark ignition. Furthermore the system is also able to measure fuel’s consumption, instantaneous engine speed of rotation and air-fuel ratio, showing all the running parameters both on a local LCD display and on a PC based graphical user interface.
Knock onset prediction of propane, gasoline and their mixtures in spark ignition engines
2016
Gaseous fuels, such as Liquefied Petroleum Gas (LPG) and Natural Gas (NG), thanks to their excellent mixing capabilities and high knocking resistance, allow complete and cleaner combustion than gasoline in Spark Ignition (SI) engines, resulting in lower pollutant emissions, above all if particulate matter is considered. In previous works [1,2] the authors proved how the simultaneous combustion of gasoline and gaseous fuel (NG or LPG) may strongly reduce both fuel consumption and pollutant emissions with respect to pure gasoline operation without a significant power loss. These very encouraging results were obtained thanks to the strong knock resistance increase obtained adding gaseous fuel …
Experimental Determination of Liquefied Petroleum Gas–Gasoline Mixtures Knock Resistance
2014
The results of previous experimental researches showed that great advantages can be achieved, both in terms of fuel consumption and pollutant emissions, in bifuel vehicles by means of the double-fuel combustion, i.e., the simultaneous combustion of gasoline and a gaseous fuel, such as liquefied petroleum gas (LPG) or natural gas (NG). The substantial increase in knock resistance pursued by adding LPG to gasoline, which allowed to maintain an overall stoichiometric proportion with air also at full load, is not documented in the scientific literature and induced the authors to perform a proper experimental campaign. The motor octane number (MON) of LPG–gasoline mixtures has been hence determi…
An NTC zone compliant knock onset prediction model for spark ignition engines
2015
Abstract Pollutant emissions reduction and energy saving policies increased the production of Spark Ignition (SI) engines operated with gaseous fuels. Natural Gas (NG) and Liquefied Petroleum Gas (LPG), thanks to their low cost and low environmental impact represent the best alternative. Bi-fuel engines, which may run either with gasoline or with gas (NG or LPG), widely spread in many countries thanks to their versatility, high efficiency and low pollutant emissions: gas fueled vehicles, as example, are allowed to run in many limited traffic zones. In the last years, supercharged SI engines fueled with either gasoline or gaseous fuel, spread in the market. Thermodynamic simulations, widely …
Octane Rating of Natural Gas-Gasoline Mixtures on CFR Engine
2014
In the last years new and stricter pollutant emission regulations together with raised cost of conventional fuels resulted in an increased use of gaseous fuels, such as Natural Gas (NG) or Liquefied Petroleum Gas (LPG), for passenger vehicles. Bi-fuel engines represent a transition phase product, allowing to run either with gasoline or with gas, and for this reason are equipped with two separate injection systems. When operating at high loads with gasoline, however, these engines require rich mixtures and retarded combustions in order to prevent from dangerous knocking phenomena: this causes high hydrocarbon (HC) and carbon monoxide (CO) emissions together with high fuel consumption. With t…
A Refined Model for Knock Onset Prediction in Spark Ignition Engines Fueled With Mixtures of Gasoline and Propane
2015
In the last decade, gaseous fuels, such as liquefied petroleum gas (LPG) and natural gas (NG), widely spread in many countries, thanks to their prerogative of low cost and reduced environmental impact. Hence, bi-fuel engines, which allow to run either with gasoline or with gas (LPG or NG), became very popular. Moreover, as experimentally demonstrated by the authors in the previous works, these engines may also be fueled by a mixture of gasoline and gas, which, due to the high knock resistance of gas, allow to use stoichiometric mixtures also at full load, thus drastically improving engine efficiency and pollutant emissions with respect to pure gasoline operation without noticeable power los…
NOX reduction and efficiency improvements by means of the Double Fuel HCCI combustion of natural gas–gasoline mixtures
2016
Abstract Homogeneous Charge Compression Ignition (HCCI) and Double Fuel (DF) combustion represent two innovative processes sharing a strong potential for pollutant emissions and fuel consumption reduction. HCCI regards the auto-ignition of a homogeneous premixed charge of air and fuel, featuring very low NOX emissions and good efficiency. Double Fuel (DF) instead indicates the simultaneous combustion of gasoline and natural gas (or gasoline and LPG), premixed with air by the port injection of both fuels within same engine cycle. Since fuel mixtures enhances the HCCI performances widening the range of possible operating conditions, the authors tested the HCCI combustion process using natural…
Development of a low-cost piezo film-based knock sensor
2003
It is well known that spark advance is a key parameter in spark ignition engine management. Increasing fuel cost and emission regulation strictness require a higher engine efficiency, which can be improved by an accurate regulation of the spark advance. Under high load conditions, an optimal spark advance choice leads the engine to run next to the knock limit, so the management and control system needs to be equipped with a knock sensor in order to preserve the engine from damage. The authors developed a low-cost knock sensor whose sensing element is a thin washer of polyvinylidine fluoride (PVDF), a fluoropolymer characterized by a great piezoelectric e ect if polarized. The sensor has be…
Determination of octane numbers of gasoline compounds from their chemical structure by 13C NMR spectroscopy and neural networks
2001
Abstract A new theoretical model has been developed which explains the association between the molecular structure and the knock resistance of individual gasoline compounds convincingly. The constitutions of more than 300 individual gasoline components were correlated with their knock rating (Blending Research Octane Number, BRON) simultaneously. 13C NMR spectra of all compounds were binned in 28 chemical shift regions of different size. The number of individual carbon signals of the nearly 2500 carbons was counted in each shift region and was combined with the information about the presence or absence of the structure groups Oxygen, Rings, Aromatics, aliphatic Chains and oLefins (ORACL). T…